TSTP Solution File: SEV408^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEV408^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n104.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:34:09 EDT 2014

% Result   : Theorem 0.44s
% Output   : Proof 0.44s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEV408^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n104.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 09:09:36 CDT 2014
% % CPUTime  : 0.44 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x13b1dd0>, <kernel.DependentProduct object at 0x17e9ef0>) of role type named cF
% Using role type
% Declaring cF:((fofType->Prop)->Prop)
% FOF formula ((ex ((fofType->Prop)->Prop)) (fun (G:((fofType->Prop)->Prop))=> (forall (A:(fofType->Prop)), ((G A)->((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx)))))))))) of role conjecture named cBLEDSOE2_pme
% Conjecture to prove = ((ex ((fofType->Prop)->Prop)) (fun (G:((fofType->Prop)->Prop))=> (forall (A:(fofType->Prop)), ((G A)->((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx)))))))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['((ex ((fofType->Prop)->Prop)) (fun (G:((fofType->Prop)->Prop))=> (forall (A:(fofType->Prop)), ((G A)->((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx))))))))))']
% Parameter fofType:Type.
% Parameter cF:((fofType->Prop)->Prop).
% Trying to prove ((ex ((fofType->Prop)->Prop)) (fun (G:((fofType->Prop)->Prop))=> (forall (A:(fofType->Prop)), ((G A)->((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx))))))))))
% Found x0:(x A)
% Found x0 as proof of ((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx))))))
% Found (fun (x0:(x A))=> x0) as proof of ((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx))))))
% Found (fun (A:(fofType->Prop)) (x0:(x A))=> x0) as proof of ((x A)->((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx)))))))
% Found (fun (A:(fofType->Prop)) (x0:(x A))=> x0) as proof of (forall (A:(fofType->Prop)), ((x A)->((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx))))))))
% Found (ex_intro000 (fun (A:(fofType->Prop)) (x0:(x A))=> x0)) as proof of ((ex ((fofType->Prop)->Prop)) (fun (G:((fofType->Prop)->Prop))=> (forall (A:(fofType->Prop)), ((G A)->((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx))))))))))
% Found ((ex_intro00 (fun (a0:(fofType->Prop))=> ((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((a0 Xx)->(B Xx)))))))) (fun (A:(fofType->Prop)) (x0:((fun (a0:(fofType->Prop))=> ((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((a0 Xx)->(B Xx))))))) A))=> x0)) as proof of ((ex ((fofType->Prop)->Prop)) (fun (G:((fofType->Prop)->Prop))=> (forall (A:(fofType->Prop)), ((G A)->((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx))))))))))
% Found (((ex_intro0 (fun (G:((fofType->Prop)->Prop))=> (forall (A:(fofType->Prop)), ((G A)->((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx)))))))))) (fun (a0:(fofType->Prop))=> ((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((a0 Xx)->(B Xx)))))))) (fun (A:(fofType->Prop)) (x0:((fun (a0:(fofType->Prop))=> ((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((a0 Xx)->(B Xx))))))) A))=> x0)) as proof of ((ex ((fofType->Prop)->Prop)) (fun (G:((fofType->Prop)->Prop))=> (forall (A:(fofType->Prop)), ((G A)->((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx))))))))))
% Found ((((ex_intro ((fofType->Prop)->Prop)) (fun (G:((fofType->Prop)->Prop))=> (forall (A:(fofType->Prop)), ((G A)->((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx)))))))))) (fun (a0:(fofType->Prop))=> ((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((a0 Xx)->(B Xx)))))))) (fun (A:(fofType->Prop)) (x0:((fun (a0:(fofType->Prop))=> ((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((a0 Xx)->(B Xx))))))) A))=> x0)) as proof of ((ex ((fofType->Prop)->Prop)) (fun (G:((fofType->Prop)->Prop))=> (forall (A:(fofType->Prop)), ((G A)->((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx))))))))))
% Found ((((ex_intro ((fofType->Prop)->Prop)) (fun (G:((fofType->Prop)->Prop))=> (forall (A:(fofType->Prop)), ((G A)->((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx)))))))))) (fun (a0:(fofType->Prop))=> ((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((a0 Xx)->(B Xx)))))))) (fun (A:(fofType->Prop)) (x0:((fun (a0:(fofType->Prop))=> ((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((a0 Xx)->(B Xx))))))) A))=> x0)) as proof of ((ex ((fofType->Prop)->Prop)) (fun (G:((fofType->Prop)->Prop))=> (forall (A:(fofType->Prop)), ((G A)->((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx))))))))))
% Got proof ((((ex_intro ((fofType->Prop)->Prop)) (fun (G:((fofType->Prop)->Prop))=> (forall (A:(fofType->Prop)), ((G A)->((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx)))))))))) (fun (a0:(fofType->Prop))=> ((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((a0 Xx)->(B Xx)))))))) (fun (A:(fofType->Prop)) (x0:((fun (a0:(fofType->Prop))=> ((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((a0 Xx)->(B Xx))))))) A))=> x0))
% Time elapsed = 0.135351s
% node=9 cost=231.000000 depth=8
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% ((((ex_intro ((fofType->Prop)->Prop)) (fun (G:((fofType->Prop)->Prop))=> (forall (A:(fofType->Prop)), ((G A)->((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((A Xx)->(B Xx)))))))))) (fun (a0:(fofType->Prop))=> ((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((a0 Xx)->(B Xx)))))))) (fun (A:(fofType->Prop)) (x0:((fun (a0:(fofType->Prop))=> ((ex (fofType->Prop)) (fun (B:(fofType->Prop))=> ((and (cF B)) (forall (Xx:fofType), ((a0 Xx)->(B Xx))))))) A))=> x0))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------